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properties of the igniter and condensed medium, A similar analysis may be carried out 
on a more general assumption as regards parameter y. If y = y0 a (fi) with y. = 0 
(I), the igniter temperature variation is substantial for o (p) o-2 (b) p-s = 0 (1). 
In that case the variables in the inner zone are to be of the form z = (r - 1) CZ~? and 
‘G = to2b2 , and for o satisfying the inequality up2 > 1, the solution is determined by 

the derived here formulas in which 6 / a2 f13 and y / a are to be substituted for 6, 

and y ,respectively. If, however, a = B-2 th e problem reduces to the solution of an 
equation in which the differential operator retains the form determined by the problem 

symmetry. 
We note in conclusion that the problem of igniting a reacting gas by a heated body 

with allowance for the cooling of the igniter and the burnout of reagent can be treated 
by the method developed here. In that case the problem reduces to the integration of 

two nonlinear integral equations for the igniter temperature and concentration of rea- 

gent at its surface. 
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The representation of the displacement gradient of an isotropic elastic body is 
analyzed. It is shown on the basis of a single controlling inequality and a polar 
expansion of the Viola tensor that such representation has generally four bran- 
ches. The mechanical meaning and the nature of that ambiguity is explained. 
Itisestablished that when the angles of turn of material fibers are not excessiv- 
ely large, only one of the four branches is obtained. Particular cases in which 
the nature of ambiguity is more complex are investigated. It is noted that in 
many practical problems the representation of the displacement gradient by the 
Piola stress tensor is unambiguous. 
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The considered problem is associated with the variational principle of complementary 
energy in the nonlinear theory of elasticity, where the statistically feasible fields of the 
asymmetric Viola stress tensor is varied [l]. A method was proposed there for expressing 
the displacement gradient in terms of the Piola stress tensor for an isotropic elastic body, 
Later the concept of complementary energy and the representation of the strain gradient 
in terms of the Piola stress tensor were considered in [2, 31, Examples of the use of the 
complemental energy concept are given in [2] and the case of an anisotropic body is 
considered in [3]. These investigations disclosed that the considered representation of 
the strain tensor leads to ambiguity, but the character and nature of the ambiguity were 
not fully investigated. 

1. The following notation is used for tensor quantities that define the stress-strain 
state of a continuous medium [4]: C for the tensor-gradient of the radius vector of the 
deformed body point,whichisalso called strain gradient, IJ = (CsCT)'Jr for the positive 
definite square root of the metric of the Cauchy strain, A = U-1-C for the tensor of 
turn of the principal axes of deformation, D for the asymmetric Viola stress tensor, and 
Q =: D . C-i for the symmetric stress energy tensor. When strains are defined relative 
to the undeformed state, tensor Q for an isotropic elastic body is an isotropic function 
of tensor U and, consequently, the principal axes of Q and U coincide, Hence tensor 
S defined by formula S = D-AT = Q.U (1.1) 

for an isotropic material is symmetric, and also an isotropic function of U 

s = s (U) (1.2) 
If the inverse function of (1.2) U = U (S) is known, the problem of representing 

the strain gradient C in terms of tensor D reduces to the determination of the expres- 
sion A (D) of the turn tensor in terms of the piola stress tensor. In fact, from (1.1) we 
have 

C = U-A = U (S).A = U [D.A= (D)].A (D) (1.3) 

The single-valued solvability of Eq, (1.2) for tensor U can be proved if one takes into 
consideration that the material conforms to the controlling GCj’V -inequality [5] ,which 
imposes on the response function D (C) of an elastic material the following restraints : 

ID (C’) - D (C)l+F - CT) > 0, C’ = C.P (1.4) 

for any nonsingular tensor C or any symmetric positive definite tensor different from 
the unit tensor P. Inequality (1.4) can be presented as 

[Q (C')X' - Q (C)Cl. .(C’= - CT) > 0 (1.5) 

If we take any arbitrary symmetric positive definite tensor P’ coaxial with P as 
tensor C ) we obtain 

c = u = P’, C’ ‘- U’ = p’.p (1.6) 

For any arbitrary coaxial positive definite and not coinciding U’ and U from fl, 5) 

and(1*6)we have [Q (U’).U’_ Q (U).u]..(U’ - u) > 0 

or in conformity with (1.1) 

[S (U’) -S(U)l.*(U’-U)>O 
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Taking into account the coaxiality of tensors S and u and representing these on the 
basis of principal directions, instead of (1.8) we obtain 

n=l n=f 

Inequality (1.9) shows that when U,’ # U, for at least one n, then S,’ # S, for 
at least one m , which means that different values of U correspond to different S, hence 
U (S) is a single-valued function, 

Let us pass to the determination of the dependence A (D) for an isotropic material. 
The problem reduces to finding the tensor of turn using the equation 

Jj.AT = A.DT (1. 1Gj 

which defines the property of symmetry of tensor S, 
Since the deformation of a continuous medium establishes a one-to-one correspond- 

ence between the coordinates of points of the deformed and undeformed body, the strain 
gradient C is a nonsingular tensor, and by suitable selection of the system of coordinates 
it is always possible to have a positive det C . 

It follows from the theorem of polar expansion that det A = g, i.e. A is a properly 
orthogonal tensor. Hence only properly orthogonal solutions of Eq. (1.10) have a physi- 
cal meaning. 

It is shown in [6] that any tensor of second rank can be represented in the form of the 
product of a symmetric nonnegative tensor by some orthogonal tensor. For the Piolastress 
tensor we have D = K-N (1.11) 
where N is an orthogonal tensor and K the nonnegative square root of tensor D * DT 
uniquely determined by the specified tensor D . From (1.10) and (1.11) we obtain 

K-H = HT.K (1.12) 

where the or~ogonal tensor H is determined by 

H = N-AT (1.13) 

Further analysis depends on the properties of tensor D -DT eigenvalues. 

2 l First, let us consider the case in which tensor D and, consequently, also K are 
nonsingular. All eigenvalues of K are then positive and the orthogonal tensor N is 
uniquely determined by formula 

N zz K-1.D (2. Ij 
From Eq, (1.12) we have 

(K.H)2 = K2 or K.H = r/K” s j/-m (2.2) 

According to (I., 12) only symmetric square roots of tensor K2 are of interest. The ge- 
neral expression for these is of the form 

K.H = fk,elel f k,e,e, -t kses% (2.3) 

where e, are unit vectors of principal axes of tensor K and k, are eigenvalues of K . 
Since tensor K is nonsingular, from (2.3) we obtain 
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H = f elel f e2e2 f eses = HT (2.4) 

When the eigenvalues of K are simple, the diades e,e, (do not sum by S) are uni- 
quely defined, and there are eight solutions for the orthogonal tensor H . From (2.4) , 

(1.13) and (2.1) we have A = H.K-‘*D (2.5) 
In accordance with (2.4) four values of tensor H have their determinants equal unity, 

while for the remaining four det H = -1. Hence only four solutions satisfy the con- 
dition det A = 1, The related tensors H must be selected so as to have det H and 
det D of the same sign. 

Thus in the most general case of simple nonzero eigenvalues of tensor D . D* the repre- 
sentation of the tensor of turn in terms of the Piola stress tensor has four branches which 

differ from each other by a 180” turn about each principal axis of tensor K. This am- 

biguity is of a fundamental character and has a mechanical meaning. 
Let us imagine a parallelepiped of elastic material subjected to an arbitrary affine 

deformation. It can be seen on the basis of the physical meaning of the Piola stress ten- 

sor [4] that by specifying tensor D we specify the externaldead forces that are evenly dis- 
tributed along the parallelepiped faces. The crmbiguity of deformation is determined by 

the nature of dead forces which do not alter their direction in space. This is shown in 
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Fig, 1 

Fig. 1 on the example of a rectangular parallelepiped subjected to normal forces. The 
undeformed body state (before application of forces) is shown there on the left and the 
two possible equilibrium states appear at the center and on the right of the diagram. In 

each of the equilibrium states, whose existence is evident, the forces, for instance, at 

face 1 have the same direction. 
A particular case of the described here ambiguity was noted in [5] under different 

conditions as an instance of the ambiguity of equilibrium of an elastic body subjected 
to external dead forces. 

Let Al be some properly orthogonal solution of Eq. (1.10). It can always be repre- 
sented in the form 

Al = e,e,’ + e,e2’ + ese3’ (2.6) 

where e,’ is some orthonormalized basis. As shown above, there exist, besides this solu- 

tion, solutions of the form A, = H,.A, (P = i, 2, 3, 4) (2.7) 

H, = elel + e2e2 + es%, H2 = ~1 - w+ - e3e3 

H, = - elel + e2e2 - e3es, H4 = - elel - e2e2 + es3 
(2.8) 
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The following statement is 
(2.7) satisfies the inequality 

valid. If one of the proper orthogonal tensors of the form 

trA > Vs (2.9) 

then the remaining three do not satisfy it. 
Let us assume that tr A, > 513. In accordance with (2.6) we have 

e,.e,’ + e2.e2’ -/- es-es’ > sf3 

It is obvious that 
e,.e,’ + e2+e2’ + e,.e,’ < 3 

since else,’ 6 1, it follows from (2.10) that 

-2 (e,-e,’ + es.es’) < -4f9 

Adding inequalities (2.11) and (2.12) we obtain 

(2.10) 

(2.11) 

(2.12) 

el.el’ - e,.e,’ - e,.e,’ < s/s (2.13) 

which means that tensor A, does not satisfy condition (2.9). The proof for A3 and A4 

is analogous. 
The constant 5/s in inequality (2.6) is evidently the best, and cannot be decreased. 

Let us use the representation of the proper orthogonal tensor in terms of the vector of 
finite turn [4] 

A = (E - kk) cos cp + kk - k x E sin cp (2.14) 

where k is a unit vector which defines the direction of the axis of turn and cp i&the angle 
of turn. From (2.14) we have 2 cos cp = tr A - 1 

We see now that inequality (2.9) reduces to the following: cos cp > 1/s, hence 

I’p]<‘p’, cp*z70° (2.15) 

Thus the geometrical meaning of inequality (2.9) that the finite angle of turn of the 

trihedron of the principal strain axes does not exceed 70”. Hence, if it is known that the 

angles of turn of material fibres are not excessive under deformation, the representation 

of the strain gradient in terms of the Piola stress tensor with allowance for (2.9) is unam- 
biguous,since that inequality separates a single solution out of four possible. 

Let us pass now to the case of multiple nonzero eigenvalues of K. If the eigenvalue 
is tripple, i.e. De DT is a spherical tensor, any orthonormalized basis can be taken as 

vector e, in formula (2.4). In other words, in this case tensor H is an arbitrary symmet- 
ric orthogonal tensor. The general expression for such tensor with positive or negative 

determinant is of the form 
H = + (E - ee) + ee sign (det D) (2.16) 

where E is the unit tensor and e an arbitrary unit vector. The sought tensor ii is de- 

termined by formula (L5). 
Thus, when tensor K is spherical, then tensor of turn A is determined by Eq. (1.10) 

only to within a 180” turn about any axis. 
In the case of double eigenvalue k, = k, the diade eses is uniquely defined, and 

any arbitrary orthonormalized basis in the plane normal to es may be taken as vectors 
e, and e2. Vector e in formulas (2.16) is now not entirely arbitrary. It can be equal es 

or es x h / VI - (e,.h)a, where h is any arbitrary unit vector different from ea. 
Thus,in the case of multiple roots of the characteristic equation of tensor D +DT the 

ambiguity of representation A (D) is of a continual character, since the expression A(D) 
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contains indeterminate parameters. The physical interpretation given in the case ofsim- 
ple roots is applicable in this case, 

8, let us consider the solution of Eq. (1.10) when det D = 0, and assume that the 
spectrum of tensor K consists of one zero number k,= 0 and two different nonzero k, 
and k,. The expression for tensor K is of the form 

K = k,e,el + k,e,e, (3.1) 

with the diades eie, and eaes uniquely determined. 

Formula (2.1) is now inapplicable and the orthogonal co-factor N in the polar expan- 
sion of tensor D is nonunique. It is not difficult to see that its general expression is 

N = e,e,’ + e2e2’ f e3e3’ (3.2) 

where the mutually orthogonal unit vectors e,' (a = 1, 2) are determined by formu- 
las (do not sum by a = 1; 2 ) 

e, 
, 

= k,-lea-D (3.3) 

and vectors es and ea’ are defined as follows: 

es = e, X es, es* = e,’ X e2' (3.4) 

According to (2.2) K . H = fk,e,e, f k,e,ez, hence e,. H = f e, and es. H= 

f e2. Because of the orthogonality of I-1 we conclude that es .H = f e3 ,whichshows 

that in this case H is also of the form (2.4). From this with the use of (1.13) and (3.2) 
we obtain 

A = t e,e,’ _I e2e2’ f e3e3’ (3.5) 

Since by (3.4) the orthonormalized bases e, and e,’ (s = 1,2,3) are identically 
oriented, the proper orthogonal tensors in the set (3.5) are defined by 

A = f (k,-‘e,e, + kz-‘e,e,) SD + e3e3’ (3.6) 

A = f (k,-le,e, - k,-le,e,).D - e3e3’ 

A direct test will show the validity of the following identities: 

+- (ki1ele2 + &‘e2e2) = g (‘l+ i2) - D*DT 
*i2621a ' 

iz=VG 

j-(k;'elel _ j&'e2e2) = g('-fi2)-D*DT 
fi2VGiT ’ 

j2= - Jf/?1E 

(3.7) 

(3.8) 

g = elel + e2e2, I, = k12 + k22 = tr (D - DT) 

I, = k,2kz2 = V2 [tr2 (D.DT) - tr (DsD~)~I 

where 1, and 1, are, respectively, the first and second invariants of tensor D - D’f. 
The equality (3.8) is to be understood in the sense that each of the two tensors in the 
left-hand side is equal to any tensor in the right-hand side, Instead of (3.6) we now have 

A = DVI+~Z)-D-D’-D 
j-i21/2j2+Zl + e3e” i2=1/1;1 

A_ DVI+i2)D.DT*D 

fi2V%2+I1 
-e3&, j2=-J& 

(3.3) 

where it is taken into account in conformity with (1.11) and (3.1) that g-D =D. 
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Introducing in the analysis vectors fa = e,.D = kaea’ (do not sum by a 
from (1, ll), (3.1) and (3.2) we obtain 

D = e,f” 
On the basis of (3.4) we have 

c/K 44 = (q x ez) (fl X f2) = %ea X epfax fP (a, I3 = i, 2) 
Using the known formula for Levi-Civita symbols 

we can verify that the follow~g identity 

a X bx X J’ = (asxb.y - a.ybax) E- axyb + bsxya - 

aeyxb - b+yxa 

is valid for any of vectors a, b, x and y. 

Applying (3.12) to (3.11) we obtain 

1, 21, 

(3.10) 

(3.11) 

(3.12) 

Note that according to (3.10) 

forea = DT, ep.f@= trDr= trD 

We obtain the formula 
ep.fafk, = fpep.fQe, = (DF)2 

(DT)” - DTtrDT + V2E [tr2DT - tr (DT)“l =_z D*T (3.13) 

where D* is the adjoint tensor of D. The matrix of mixed components of D* in any 

arbitrary basis is the same as the transposed matrix of signed minors of matrix of com- 
ponents of D. For the nonsingular tensor X the equality X* = detXX-l is valid. 

From (3.9) and (3.13) we finally obtain the following explicit form of the general so- 

lution of Eq. (1.10) : 

A = 12-l (D*T =t (2i2 + I,)“/* [(I, + j2) D - D*D=*Dl), 
i,=*fG (3.14) 

We remind that this solution is valid under conditions 

k, = 0, k, # 0, k, # 0, kl# k, 

or in the equivalent form 

det D = 0, I, # 0, I, + 2vE 

In the case considered, as in that of the nonsingular tensor D, the expression for the 
tensor of turn has four branches that differ from each other by a 180” turn about each 
principal axis of tensor D -33 T. The ine~a~ty(2.9) which separates from the four solu- 
tions the unique one is evidently applicable also in this case. 

Note that the case of det i) = 0 in spite of being degenerate is fairly important, 
since it obtains in thin-walled structures where the Cauchy stress tensor may be often 
considered as ~~d~ensional (as, e. g. t in the zero-moment theory of shells). 

If two nonzero eigenvalues are the same (k, = k,), only the principal axis of tensor 
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K which corresponds to the eigenvalue is uniquely determined, and any orthonormalized 
basis in a plane normal to es can be taken as e, and e s . In that case the tensor of turn 
is determined by the Piola stress tensor to within a 180” turn about e3 and any axis nor- 
mal to es. 

It can be shown that, when only one eigenvalue is nonzero,(K = kieie,), the gene- 

ral solution of Eq. (1.10) contains the following indefiniteness : the turn by any arhitr-ry 
angle about vector e and a 180” turn about any axis normal to e,. 

Finally, when alI three principal values of tensor K are zero, then D = 0 and any 

proper orthogonal tensor satisfies Eq. (1.10). 
It has been , thus, established that in the case of simple roots of the characteristic equa- 

tion of tensor D . DT , irrespective of whether tensor D is invertible, the representation 
C(D) has four separate branches. If it is a priori known (as it is in many practical 
problems) that the angles of turn of material fibres are not excessive, that representation 

in conjunction with inequality (2.9) is single-valued. In the case of multiple roots re- 

presentation C (D) contains indeterminate parameters. However such cases are excep- 
tional and in concrete problems they can appear only at certain surfaces or lines inside 

the region occupied by the body (i.e. on zero-measure sets). Owing to this, the indica- 
ted indefiniteness can be eliminated by passing to limit. Thus the representation of the 
dislocation gradient in terms of the Piola stress tensor is in many practical problemssin- 

gle-valued at each point of the body, and this makes possible the application of the va- 

riational principle of complementary energy for solving problems of the nonlinear theory 

of elasticity. 

REFERENCES 

1. Zubov, L. M., The stationary principle of complementary work in nonlinear the- 

ory of elasticity. PMM Vol. 34, N=” 2, 1970. 
2. Koiter, W. T., On the principle of stationary complementary energy in the non- 

linear theory of elasticity. SIAM J. Appl. Math., Vol. 25, Nz 3, 1973. 

3. Christoffersen, J., On Zubov’s principle of stationary complementary energy 

and related principle, Danish Center for Appl. Math. and Mechanics, The Tech- 

nical University of Denmark, 1973. 

4. Lur’e, A. I., Theory of Elasticity. Moscow,“Nauka” ,197O. 

5. Truesdell, C., Initial Course of Rational Mechanics of Continuous Media. Mos- 

cow, “Mir” , 1975. 
6. Gantmakher, F. R., Theory of Matrices (English translation), Chelsea, N. Y. , 

1973. 

Translated by J. J. 4 


